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Gaia: Global AI Accelerator
Goals:

• Improve speed & skill of atmospheric models using 
hybrid AI cloud physics surrogates:
• Accurately model local convection
• Predict self-organizing atmospheric phenomena, e.g. MJO

• Exploit hybrid models to explore future climate regimes 
and identify early tipping point signatures

Why is this Hard?
• Global climate models (GCMs) are computationally expensive and lack the resolution required 

to model local convection and clouds
• This restricts our ability to model convection processes including wave phenomena such as 

MJO, and limits forecasting skill and the ability to explore future climate regimes

Key Gaia ideas and approach:
• Use AI surrogates to model cloud physics to substantially increase computational efficiency
• Use LES and reanalysis data to learn corrections to the AI surrogate models with the goal of 

improved MJO modeling while retaining computational efficiency
• Use improved hybrid models and reduced order models to explore tipping point regimes (such as 

predicted “superMJO”) and early warning signatures
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Gaia Hybrid Model Building Approach
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Gaia Building Blocks & Products
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M6 Update
Description of datasets, data preprocessing, python modeling & analytics, 
and data products can be found at:
https://github.com/stresearch/gaia

GCM
• Community Atmospheric Model (CAM4)
• 30 minute time-step
• 2.5-degree grid (144x96)
• 30 altitude levels
• Four year run (1979 SST; Time Varying) 

which will be extended to ten years.
• Outputs every 3 hours + additional model 

time-step (memory)

Training of initial AI cloud physics model surrogates is currently based on 3 and 4-year runs from 
two NCAR community atmospheric models (CAM4 and SPCAM); these datasets have been 
reproduced with additional variables* identified as useful for the hybrid model, and will later be 
extended to 10 years of simulation time:

CRM
• SPCAM (super parameterized CAM)
• 20 minute time-step
• 16 SAM (The System for Atmospheric Modeling) Columns
• 26 levels
• Year 2000 SST (Climatology)
• Three year simulations:

• Morrison Microphysics + Conventional parameterization for moist 
convection and large-scale condensation.

• Morrison Microphysics + Higher-order turbulence closure scheme, 
Cloud Layers Unified By Binormals (CLUBB)

• Outputs every 3 hours + additional model time-step (memory)* See following slides

https://www.cesm.ucar.edu/models/ccsm4.0/cam/
https://ncar.github.io/CAM/doc/build/html/users_guide/atmospheric-configurations.html
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Gaia AI inputs (state info passed from GCM)
Surrogate
Inputs

* Note that at this stage we are not adding 4D radiative inputs (e.g. SOLL)

Name Long Name shape unit
Q Specific humidity (T, L, 96, 144) kg/kg
T Temperature (T, L, 96, 144) K
U Zonal wind (T, L, 96, 144) m/s
V Meridional wind (T, L, 96, 144) m/s

OMEGA Vertical velocity (pressure) (T, L, 96, 144) Pa/s

Z3 Geopotential Height (above sea level) (T, L, 96, 144) m
PS Surface pressure (T, 96, 144) Pa
SOLIN Solar insolation (T, 96, 144) W/m2

SHFLX Surface sensible heat flux (T, 96, 144) W/m2

LHFLX Surface latent heat flux (T, 96, 144) W/m2

FSNS Net solar flux at surface (T, 96, 144) W/m2

FLNS Net longwave flux at surface (T, 96, 144) W/m2

FSNT Net solar flux at top of model (T, 96, 144) W/m2

FLNT Net longwave flux at top of model (T, 96, 144) W/m2

FSDS Downwelling solar flux at surface (T, 96, 144) W/m2
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Gaia AI outputs (state info passed to GCM)
Surrogate
Outputs

Name Long Name shape unit
PTEQ Q total physics tendency (T, L, 96, 144) kg/kg/s
PTTEND T total physics tendency (T, L, 96, 144) k/s
DCQ Q total tendency moist processes (T, L, 96, 144) kg/kg/s

DTCOND T total tendency moist processes (T, L, 96, 144) k/s
QRS Shortwave heating rate (T, L, 96, 144) k/s
QRL Longwave heating rate (T, L, 96, 144) k/s
CLOUD Total cloud cover (T, L, 96, 144) fraction
CONCLD Convective cloud cover (T, L, 96, 144) fraction
FSNS Net solar flux at surface (T, 96, 144) W/m2
FLNS Net longwave flux at surface (T, 96, 144) W/m2
FSNT Net solar flux at top of model (T, 96, 144) W/m2
FLNT Net longwave flux at top of model (T, 96, 144) W/m2

FSDS Downwelling solar flux at surface (T, 96, 144) W/m2

FLDS Downwelling longwave flux at surface (T, 96, 144) W/m2

SRFRAD Net radiative flux at surface (T, 96, 144) W/m2

SOLL Solar downward near infrared direct to surface (T, 96, 144) W/m2

SOLS Solar downward visible direct to surface (T, 96, 144) W/m2

SOLLD Solar downward near infrared diffuse to surface (T, 96, 144) W/m2

SOLSD Solar downward visible diffuse to surface (T, 96, 144) W/m2

PSL Sea level pressure (T, 96, 144) W/m2

PRECT Total precipitation rate (liquid+ice) (T, 96, 144) m/s

PRECC Convective precipitation rate (liquid+ice) (T, 96, 144) m/s

PRECL Large-scale precipitation rate (liquid+ice) (T, 96, 144) m/s

PRECSC Convective snow rate (T, 96, 144) m/s

PRECSL Large-scale snow rate (T, 96, 144) m/s
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Hybrid model integration
• Completed integrating the pytorch-based AI surrogate back into the Fortran-based 

GCM models 
• Both the traditional parameterized physics model and the AI/ML surrogate physics 

model integrations can run side by side in the same run for comparison
• Currently debugging binding problem in the C++-Fortran binding code

Application Binary Interface 
(ABI)
• Start with total T,Q 

physics tendencies and 
track them back

• Export Pytorch Model 
with Torchscript

• Bypass Python by using 
C++

• Call C++ within Fortran
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Code components

• *.config.F90 file provides configurations
to switch on/off different physical processes 
(e.g. radiation)

• *solin.F90 takes out solar insolation calculations 
out of radiation (makes easy to bypass complex 
radiative calculations)

• tphysac* and tphysbc* provide the gateway for 
the ABI to function

• Machine_learning_model.F90 reads in data 
from the ABI 

• ABI Wrappers
• Torch-wrap* contains wrappers and 

definitions for the Libtorch and C++ binding 
to function

• *plugin loads the Pytorch model into the 
CESM code base
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Hybrid model characteristics

Flexibility
• Switches enabled to run 

hybrid & parameterized 
physics in a single time 
step.

Generalizability
• Extendable to replace 

other physics 
parameterizations such 
as radiation, boundary 
layer and surface 
schemes due to modular 
code structure. 

Modularity & 
Reliability
• Implementation fits 

nicely with CESM and 
can be joined with the 
CESM source tree 
efficiently.

Performance
• Faster to run by > 3X 

than initial parametrized 
runs depending on the 
complexity of the ML 
trained model.

Architected as a set of modular building blocks for easy 
adoption and easy extension by the community
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Exploring fine-tuning a model for a subset of 
output variables
• Fine-tune CAM4-trained model to predict SPCAM total precipitation
• Compare to SPCAM-trained model trained from scratch
• SPCAM testset used, looking at total precipitation output variable only
• Prediction skill reaches ~92%, (CAM4-trained model on CAM4 testset reaches 

96% skill)
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Gaia Current Status (Aug 13, 2022)
Completed
• Initial CAM4 and SPCAM datasets generated (4 years, 30/20 min timestep)
• Developed & optimized several AI surrogates for both CAM4 and SPCAM

• Validated AI skill for several architectures (FC, CNN, bottlenecked FC, transformer)
• Dimensional analysis to quantify model complexity; also assessed impact of memory terms
• Jacobian analyses as potential new skill metric and means of regularization

• Hybrid model machinery developed
• Integrates pytorch AI surrogates into NCAR’s Fortran GCM models
• ~ 3X speedups
• New CAM4 and SPCCAM datasets generated to accommodate additional variables

Ongoing
• Run hybrid models and evaluate for stability, skill, and MJO modeling
Next Steps
• Stability enforcing methods (if needed)
• AI retraining and augmentation (using WRF/LES model data and ERA5 reanalysis data)
• Explore forcings (e.g. high SST state regimes)
• Reduced order tipping point model development
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Hybrid model stability
Stability of deep neural net surrogates coupled into global atmospheric 
climate models has been an issue reported in the literature, e.g.:

• N. D. Brenowitz, T. Beucler, M. Pritchard, C. S. Bretherton, “Interpreting and Stabilizing 
Machine Learning Parameterizations of Convection”, J. Atmos. Sci., 2020

• X. Wang, Y. Han, W. Xue, G. Yang, G. J. Zhang, “Stable climate simulations using a 
realistic general circulation model with neural network parameterizations for atmospheric 
moist physics and radiation processes”, GeoSci. Model. Dev., 2022

• Problems manifest as rapid blowup in time of the total energy of the system; this can 
happen even for high-skill DNN surrogates

• Problem is not fully understood
• Solutions are mostly heuristic, and include:

• Alternative network architectures, e.g. ResNets
• Input variable ablation
• Denoising architectures
• Optimizing for wave propagation response in a linearized model

• Problem raises the concern that retrained AI’s (e.g. using LES or ERA datasets) 
might also exhibit stability issues when integrated back into GCM
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Approaches to hybrid model stability
We are just beginning to test the hybrid models; first steps will be to:
• Quantify hybrid model stability
• Quantify hybrid model skill on mean properties
• Quantify hybrid model skill in reproducing MJO-type structures
• Compare SPCAM and CAM4 hybrid models

We are considering several approaches to address potential stability problems of the 
coupled AI-GCM hybrid models:
• First assess if problem is triggered by amplified skill errors, out-of-training behavior, non-causal AI 

behaviors, or other
• Assess local Jacobian of DNN input-to-output map in trouble areas, identify common features and 

potential spectral regularization methods
• Assess if problems are agnostic to AI architecture and/or AI model skill
• Assess impact of added memory terms or other approaches to encouraging causality
• Assess dimensional reduction regularization methods to improve generalizability
• Assess if AI surrogates conditioned on latitude and/or season perform more reliably
• Assess impact of data augmentation near trouble zones
• Assess impact of alternative normalizations
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Another idea for hybrid model(s) training
Consider a 2-step process: (1) train CAM physics model surrogate as before; 
(2) train corrections to this baseline model based on performance of hybrid 
model

h
SCOSCI

S(ti) S(ti+1)
GCM Dynamics

Baseline CAM4 
cloud physics 

model

S’CO

Corrective 
model (trained 
on WRF/LES)

S’(ti+1)

Training of corrective model based on cost function looking at various skill metrics, 
stability, and S’ residuals
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Another approach to gray-box corrections
• Constrain the NN to possess the desired coarse bifurcation diagram

• The coarse steady states as well as their coarse stabilities

• Prescribe this as part of the loss ---

• OPTIMIZING NNs with algebraic constraints (KKT optimization)

• Separately LIFTING in multiscale problems:

• construct full model IC consistent with given coarse features:

• Initializing on slow manifolds / Umbrella Sampling / GANs

• Coarse: e.g. Majda skeletal Madden-Julian States; Fine: current models
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CFD Example: data-driven corrective models 
from simulation data

Goal: Hardwire partially known physics in the structure of the ML algorithm (e.g. ANN) that learns the PDE from data 

(a) as an additive correction to a known, approximate equation

(b) as a functional correction 

An illustrative example: a phase field equation, with 2D vector field f and 1D boundary h
for which two levels of approximate interface equations can be derived:

Eikonal and  KPZ

Black box NN model performance:                          

Additive Correction to KPZ               Functional Correction to KPZ
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Comparison of space-time errors for Eikonal, 
KPZ, black box NN, and corrective NN
Note: while black box NN provides a better mapping than either Eikonal or KPZ 
approximations, learning a NN correction to the KPZ approximation does better yet!
We plan to exploit this corrective gray box approach to improve our AI surrogate model 
performance
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On tipping point analysis with reduced-
dimension models

Goal: build targeted bifurcation surrogates close to tipping points
Example: complex economic stochastic agent-based model with 50,000 agents
Type of tipping point: fold (turning point) 

Agent distribution mean depends on 
parameter g, with tipping point at g ~ 45

Use DNN to learn stochastic differential 
equation representation of behavior close to 
tipping point
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Tipping point modeling, cont.
Kramer’s theory for modeling Brownian escape times
System properties are obtained from short-scale nonequilibrium simulations (at g = 
45.2 in this example) and the learned stochastic differential equation

Key idea: for many complex systems, the tipping point dynamics becomes low (even 1D) dimensional 
close to a tipping point; we will attempt to learn a reduced dimensional tipping point model from our 
hybrid model at strong forcing (e.g., for elevated sea surface temperatures)
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Summary

• Generated several training datasets
• Trained and validated an ensemble 

of AI surrogates
• Completed large engineering task of 

hybrid model infrastructure build

Completed

Next Phase I Steps
• Evaluate hybrid models
• Test new approaches to guarantee 

model stability and skill
• Test new approaches to build in 

model corrections using high fidelity 
model and observational data

• Develop reduced dimensional 
models, regularization on skeletal 
models, tipping point models

Phase 2 Analytic Products
• Fast “what if” trajectory analysis under 

forcing conditions
• Early warning tipping point signatures
• Data-driven model corrections
• Quantify value of new data


