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Gaia Description and Overall Goals (from M1 report) 
Gaia aims to develop new hybrid AI tools and methods to accelerate Global Climate 
Models (GCMs) by replacing the standard parametric cloud-resolving physics models with 
improved Artificial Intelligence (AI) surrogate models that better capture local convection 
aggregation. By training the AI surrogate off of both GCMs (using CAM and SPCAM cloud 
physics parameterizations) and a Weather Research and Forecasting - Large-Eddy Simulation 
(WRF-LES) turbulence-resolving weather model, Gaia will concentrate on three specific 
subgoals: 

a) improve the overall computational efficiency of the GCM; 
b) improve its ability to accurately predict self-organizing atmospheric wave phenomena; 
c) exploit this improved model to explore previously unobserved regimes and to identify 

early warning signatures of large scale changes to such self-organizing phenomena (our 
interpretation of Tipping Points) that could have large downstream global weather and 
climate impacts. 

Gaia specifically focuses on modeling the eastward-moving cloud structures known as Madden 
Julian Oscillations (MJO) and learning predictive signatures for tipping point changes in these 
structures and for other convective organizations. For example, it has been hypothesized that 
sufficient CO2 forcing could cause the MJO to transition to a “super MJO” in which tropical 
rainfall aggregates into a large mass and easterly winds weaken or even reverse, with large 
adverse impacts on ecosystems and populations. 

More generally, Gaia exemplifies a systems approach to applying AI and Machine Learning 
(ML) methods to construct hybrid models with sufficient fidelity to test specific scientific 
hypotheses and accelerate scientific discovery near the limits of available/affordable 
computation. 

M2 Update: AI Hybrid Model & Initial Training 
Figure 1 (from M1 report) shows the basic Gaia framework, where an AI surrogate is 
progressively trained using training datasets from multiple cloud physics models (CAM4, 
SPCAM, WRF-LES). The physics model takes state data from 26 altitude layers (humidity, 
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relative humidity, temperature, and wind in zonal U and meridional V directions) for every 
latitude-longitude voxel and for every time step, and predicts the humidity and temperature 
tendencies (rate of change) along with precipitation. Much of our architectural framework was 
completed in January, so this M2 report will focus on our current and rapid progress in 
generating training data and testing an initial AI model. 

 
Figure 1. Overall Gaia Model and Integration Architecture 

We note that a key assumption in our approach rests on the same assumption that physics-
parameterized global climate models rely upon, i.e. that there is sufficient state information 
captured in the physics parameterization to be usefully predictive, and that this model 
generalizes across both geography of the voxels and the season. Based on this assumption of 
universality, our AI strategy is to build up datasets using multi-year runs of GCM-CAM (and 
later, WRF-LES), and randomly subsample voxels in space and time to obtain quasi-
independent input-output pairs for training and validation purposes. 

We initially start with a vanilla deep neural network architecture (fully connected, seven layer, 
512 neurons wide, using LeakyRelu activations, BatchNorm and Dropout (2) regularization). 
Input variables are normalized to 0 mean, 1 variance, and output variables are normalized by 
variance only. The current DNN network has 1.4e6 parameters. 

Our initial dataset consists of ~ 1 year of GCM-CAM4 simulations, with data pulled out at 30 
minute timesteps over the course of 334 days. The grid is a 2.5-degree grid, 96 latitude x 144 
longitude. This gives us 2.2e8 space-time voxels. Input vector length was 130 (26 levels x 5 
parameters); output vector length was 53 (26 x 2 tendencies plus precipitation). 

Table 1 summarizes the current training approach. 

Data Metrics Comments 
Timesteps 334 day x 48 timesteps per day  
Grid points 96 latitude by 144 longitude  
Input 26 levels x 5 params Humidity, rel. humidity, temp, wind in u and v directions 
Output 26 levels x 2 tendencies + 1 Humidity, temp tendencies + precipitation 
Test interval Last 3 days of every 30 days = 

10% of data 
Subsample by 8 

Training interval = Not_test  
Model   
FCN w LeakyRelu 7 layer x 512; 1.4e6 parameters with BatchNorm, Dropout 
Normalization Variance = 1  
Training   
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Optimization ADAM w. 1e-3 learning rate  
Batch 24x96x144 (I/O) pairs  
Convergence Convergence after 500 epochs  
Train time 1 epoch ~ 30 sec  (30 x 8 sec without subsampling) 
Loss MSE Skill = 1-MSE/Var 

Table 1.  AI Model Parameters 

At this stage of our project we are ahead of plan, and initial model results are encouraging. 
Based on the one year of simulated training data, we demonstrate useful AI predictive skill, 
shown in Figure 2a for PTTEND (temperature tendency) and in Figure 2b for the least-well 
predicted variable PTEQ (humidity tendency). Prediction skill for temperature remains fairly 
good for most altitude levels. Prediction skill for humidity tendency diminishes in the lower 
latitudes and highest altitude levels, although it must be noted that at these high altitudes the 
humidity and humidity tendency are close to zero and there is significant computational noise in 
the simulated data. 

 

 
Figure 2a.  AI model skill, MSE and STD in predicting temperature tendency vs altitude level and latitude 

(aggregated over longitudinal coordinates) 

 
Figure 2b. AI model skill, MSE and STD in predicting humidity tendency vs. altitude level and latitude 
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Figure 3 shows humidity tendency timesteps (both training data and prediction), showing very 
good predictive skill for humidity tendency at lower altitudes but noisy predictions at high 
altitude. It’s possible that the CAM physics model itself (our ground truth) has limited predictive 
skill in these regions other than to predict zero, and that our model is simply learning 
computational noise. But the high variance in our AI prediction points towards a normalization or 
data sampling bias problem with the model not fully understood. The remainder of this M2 report 
focuses on our attempts to understand and deal with the problem. 

 
Figure 3.  Prediction waveforms for PTEQ (humidity tendency) at highest and lowest altitude levels 

Two more charts further illustrate the problem. Figure 4 shows the generalization ability (test 
skill/training skill) of the model in predicting PTEQ (humidity tendency) for the 26 levels, again 
showing the problem with the highest altitude levels. Figure 5  shows the ratio of test-to-training 
variance for Q, also highlighting a potential sampling bias resulting in substantially different 
training and test variances at high altitudes where the tendencies are near zero. 
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Figure 4.  Ratio of PTEQ test/train prediction skill as function of level (levels 0 through 10 correspond to 
the highest altitude levels and are most problematic for prediction skill) 

 
Figure 5. Ratio of test/train PTEQ variance per variable as a function of level 

In order to confirm the hypothesis of insufficient randomization in our day-by-day sampling, we 
trained a new AI model that attempts to achieve predictive skill for the five highest altitudes 
(levels 0 through 4). Randomly splitting test and training data on day boundaries continued to 
produce poor test validation scores, as shown in Figure 6. However, randomly pulling timesteps 
for test and training data pairs without segmenting on day boundaries produced much better 
skill, possibly indicating sample correlation issues in the limited test dataset. 
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Figure 6.  Model trained to predict the five highest levels of Q (humidity), showing effect of randomizing 
test and train samples on day boundaries 

This sampling issue remains puzzling and warrants further investigation, although we expect 
that adding in the larger simulation runs may alleviate the problem. 

For these preliminary data studies, we performed one final check. In order to estimate the 
intrinsic dimensionality of the model, we ran a spectral PCA (principal components analysis) on 
the input and output variables. Recall that our input variables form a vector of 130 parameters, 
and output variables another 53 parameters. PCA was performed looking at both the space of 
input variables, and the concatenated space of input plus output variables. The results of this 
analysis are shown in Figure 7, showing a sharp knee at about 100 variables, which one might 
take as a measure of the intrinsic dimension of the model. 

 
Figure 7.  Spectral PCA dimensionality analysis of the data size 

Next Steps / Planned Activities 
Over the next period we will continue to generate additional training (roughly 10 years of CAM 
and SPCAM GCM model simulations). We have already completed four years of simulation 
using SPCAM with CLUBB (unified cloud parameterization) and Morrison microphysics, having 
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a 20-minute timestep and 16 SAM columns, and another four years of simulation using SPCAM 
with Morrison microphysics but no CLUBB. We note that the GCM with CAM or SPCAM include 
additional variables that will be incorporated into the AI surrogate, e.g.: 

• Sea Level Pressure, SLP 
• Solar Insolation, SOLIN 
• Sensible Heat Flux, SHFLX 
• Surface Latent Heat Flux, LHFLX 
• Net Solar Flux at Surface, FSNS 
• Net Longwave Flux at Surface, FLNS 
• Net Solar Flux at the Top of Model, FSNT 
• Net Longwave Flux at the Top of Model, FLNT 

While completing the ten year simulations, we will continue to assess our AI models using these 
additional parameters and the already-simulated four-year datasets. 

Two potential issues arise with the augmented training: (1) we will require additional storage for 
the new data sets (roughly 4TB, for which remote hosting on the cloud will cost ~ $100/mo); (2) 
we may run into computational bottlenecks and would be interested to explore AWS access 
since some of the ACTM performer base is already partnering with Amazon on climate 
modeling. 

In addition to revised randomization and test holdout strategies, we plan several additional 
investigations towards AI surrogate optimization: 

• Experiment with alternative re-weighting/normalization schemes for handling high 
altitude, low latitude PTEQ tendencies. 

• Embed additional structure within the AI networks to exploit spatial structure of variables 
at different altitudes. 

• Assess the value of adding output history from the previous timestep; use various 
spectral analyses and manifold learning approaches to determine the most compact set 
of history variables required to improve prediction skill and generalizability; to 
accommodate the previous timestep memory we propose to subsample model outputs, 
e.g. using timesteps for every 3 hours rather than every 20 minutes, in order to limit file 
sizes. 

• Post-process the SPCAM runs to assess the differences in simulated fields due to the 
CLUBB parameterization. 

• Investigate nonlinear (as opposed to PCA) techniques to quantify model dimensionality, 
e.g. using diffusion map embedding https://datafold-
dev.gitlab.io/datafold/tutorial_03_basic_dmap_scurve.html 
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